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I n  discussing the severa l  phenomena of interest ,  it is con- 

-- 
venient to employ a 'di stribution function N(.r ,  v) in  position and 

velocity space such that the expression, 

represents  the number of par t ic les  contained in  the six-dimensional 

element of volume d r  d v ,  where r is the position vector, drawn 

f rom the earth, and v is the velocity vector.  Because tne mass of 

a particle does not affect its motion in. the gravitational field of the 

earth,  the distribution over  m a s s  is not considered. 

si ty N(T) is giv.en by the integral  of NE, y )  over  velocity space, i. e . ,  

- -. 
- 

The par t ic le  den- 

The particle flux, numerically equal to the impact ra te  on a sphere  

which presents unit a r e a  to all directions,  is defined as 

-- 
4 (r)  = JJJvN(r, v) d y  (3)  

- 
where v is the magnitude of the velocity vector  v . The directional 

flux, o r  vector current  density J(r,^v) is given by 

J(r ,  c )  = J ae,F) dT (4) 
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A where v is a unit vector along 

Flux is a generalization o 

- 
v .  

the cur ren t  concept anc reduces to 

the magnitude of the current  vector when the corpuscles a r e  incident 

upon an infinitesimal sur face  o r  volume f rom a sil-;gle direction. Whefi 

par t ic les  a r e  incident simultaneously f rom two o r  more  directions -as 

I --. 

they a r e  in meteoric,  cosmic ray,  nuclear radiation, and all isotropic 

fields -one can perform a useful summation' over  all of the cur ren ts  by 

defining the flux as the 

total particle path length t raced  out through a unit 

volume, at the point of interest ,  duringunit time. 

Since a cylinder whose base is of unit a r ea ,  and whose height 

containing p particles pe r  unit volume, can be regarded is I Til , i 

as flowing through the unit volume during unit t ime, w h e r e  

- 
v = the velocity of the particles incident f r o m  ith direction 

= the density of the particles incident f rom ith direction 

i 

p 

and the path length generated within the unit volume during unit time is 

c lear ly  p .  v , we can write the flux $ as 
i i  

- 
$E ? p i  vi = ? I J i I  (J. the cur ren t  due to particlez, 

1 1 1 f r o m  i directior,) 

In the case  of particles incident f r o m  a single direction, this r e -  

&_Ices t." the c u r r e z t  .? "r zurr\.her cf P 2 r t i C I P E  crcssing :zit area normal 

to the current ,  during unit time, i. e. , 

Summation cannot be vectorial unless radiation coherent 

$ --+ IJ I . 
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The number of par t ic les  crossing a unit a r e a  per  unit t ime is 
given by 

J(< fi ) = JJfi T(Y,$) dw (5) 
A 

where fL is  the outward normal  unit vector to the a r e a  and d o  is the 
element of solid angle. The integral  over w is to be ca r r i ed  out over 
a 27r solid angle to obtain the impact ra te  on one side of the a rea .  

The problem posed is that of determining h o y  N( r ,  v) and 
the associated quantitites N ( r ) ,  4 (3, J(r ,  0 )  and J(T GI ) a r e  changed 
by the presence of the ear th  and the motion of a satell i te designed to 
measure  them. The l a w  of energy conservation permits  us to write 

-- 

where voo is  the particle speed a t  infinity, 7' is the gravitational con- 
stant, M is  the m a s s  of the ear th ,  and v ( r )  is the particle speed a t  
a distance r f r o m  the ear th .  The l a w  of conservation of angular 
momentum permits  us  to write - -  

I r x v I =  a b  (7) 

where a is the impact parameter  and r and v a r e  the position and 
velocity vectors at any point on a particle orbit .  

F rom Eq. ( 6 ) ,  we see t h t  the impact problem is m o r e  seve re  
near  the ear th  than in f r ee  space,  because of the additional speed as-  
sociated w'ith the entry of the particle into the gravitational field of 
the ear th .  
infinity i s  monoenergetic everywhere, with the co r rec t  speed given 
by Eq. (6). In F i g .  1, the dependence of kinetic energy on distance f r o m  
the ear th  is shown graphically. 

Fur ther ,  we can see  that a monoenergetic distribution a t  

The escapevelocity v is given by e 

v e = d w  = 1.1  x lo4 m / s e c ,  (8) 

where r is the radius of the earth, has been chosen as a convenient E 
reference velocity. Figure 1 i l lustrates  well the expectation that high 
velocity meteoroids a r e  influenced relatively l i t t le by the ear th .  

4 
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APPLICATION OF LIOUVILLE'S THEOREM 

TO MONOENERGETIC ISOTROPIC DISTRIBUTIONS 

The Liouville theorem states  that the density of par t ic les  in  

the neighborhood of a given particle in phase space does not change 

as a resul t  of the particle motion. Therefore ,  i f  (rl,vl) and (rz,vz) 
a r e  two points in phase space which l ie on a particle t ra jectory,  then 

- -  

- -  
The distribution function N ( r ,  v) may be taken as  the phase space 

density, although it is more  common to use the momentum ra ther  than 

the velocity coordinates. 

show that, i f  the distribution of par t ic les  is uniform, isotropic in  

direction, and monoenergetic a t  infinity, it is monoenergetic and i s o -  

tropic everywhere. 

jectories which can be drawn through a point located by the position 

vector 7 , which locates the point relative to the earth.  Through 

this point, t ra jec tor ies  can be drawn in all possible directions and 

t raced  to infinity, subject only to the constraint  that everywhere 

The Liouville theorem can be applied to 

This  can be seen by examining the possible tra- 

- 
v( r )  2 v, = d n ,  (10) 

ve being the velocity of escape a t  any point F . 
If the two points in  Eq. (9 )  a r e  considered to be located at r and at 

infinity, every possible direction at r can be connected to infinity, 

where the distribution is  isotropic, monoenergetic, and uniform, and 

where the particle density in phase space,  by the Liouville theorem, 

i s  the same a s  a t  F . 
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Let  u s  assume that the distribution function a t  7, in Eq. (9) 

can be written in  the form of a Dirac delta function, 

where c i s  a constant, v1 i s  the variable of distribution, and v ( r l )  

i s  a speed parameter .  

r l  is  isotropic , spherically symmetr ic ,  and monoenergetic, with all 

par t ic les  having a speed v(r l )  . In t e r m s  of spherical  coordinates, 

the element of volume in velocity space can be written as  

Equation (11) s ta tes  that the distribution a t  
- 

- 
dvl = v: dvl s i n  8 ,  de, dqhl . 

F r o m  Eq. ( 2 )  the particle density is  given by 

v l = m  e l = n  4 ,=2n  

vl=o e l=o  4,=0 
N ( C )  = J J s cd[vl - v(rl)] v: dvl 

sin O1dO1d4, = 4 n c v Z  (r l )  ( 1 3 )  

- 
At rz , another point on a t ra jectory through r l  , Eqs.  (2), ( 9 ) ,  ( l l ) ,  

and (12) permit  us  to write a n  expression for the particle density in 

the fo rm 

v 2 = ~  e z = n  4 2 = 2 ~  

v 2 = ~  8,=0 4,=0 
N(&) = J N ( r z , T z ) v z 2  sin 13, dvz de2 dbZ 
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2 cd[v - v(rl)] v2 s in  02d> de2 d42 

If, in  particular,  we assume that the distribution represented 

by Eq. (11) resul ts  f rom an isotropic, uniform, monoenergetic d i s -  

tribution at infinity and that the particle speeds v1 and vz a r e  related 

through Eq. (6) for the conservation of energy, we have 

v - 2yM/r2  v - 2yM/r  = 2 

1 1 2 

so that 

v dv = v dv 
1 1  2 2  

1 
The substitution of Eqs. (15) and (16) into Eq. (14) yields 

- 
6[vl - v ( r  )] v v dv 

2 1  1 
N ( r  ) = 4 c J 1  

= 4 7~ c v(r2 ) v(rl  ) 

- 
The ratio of particle densities at and rl is given by Eqs. (13) 

and (17) as 
2 

~ 

'alternatively this can be regarded as transformation - i. e . ,  Jacobian 
J(v2 / v l  ) = y /v2 to obtain the same  resul t .  
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If is  assumed to be a t  infinity and F2 is arbitrary,  the application 

of Eq. (6) resu l t s  in 

1 - 

N(r) /N(w)  = v ( r > / v ( ~ )  = [ 1 t 2YM/rv:l2. (19) 

In a like manner ,  the ratio of fluxes is found to be 

In the vicinity of a finite earth,  the meteoroid density and flux 

predicted by Eqs .  (19) and ( 2 0 )  a r e  reduced by the shielding effect of 

the ear th .  In Fig.  2 ,  the point P at which the flux is to be computed 

is  located a t  a distance r f rom the earth.  Pa r t i c l e s  which would 

have a r r ived  a t  an angle of less than 

the earth.  The correction factor  F for Eqs. (19) and (20),for the 

case  of isotropic radiation, is  just the ra t io  of the solid angle over 

which radiations can a r r ive  to the total solid angle about the point. 

Therefore  

e m  have been intercepted by 

e =T 

e =  em F = J  sin 8 d e  = $[l  t cos O J ( 2 1 )  

Using Eq.  (7), the definition of the vector c r o s s  product, and 

the f ac t  that  r and a r e  normal at the point of c losest  approach 

rE , as  shown in Fig.  2, 8, may be defined by the equation, 

a v  - = r v( r )  sin 8 , m o o  - m 

9 
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where 

and the conservation of momentum is applied to three  points located 

on the grazing orbit. F r o m  Eqs.  (6) and (22 ) ,  

am is the impact parameter  associated with the grazing orbi t ,  

- - -  v$ t 2 y M / r ~  
rE 1 vi$ t 2YM/r 
r L  

and 

(24) 
t 2YM/r 

i 

* 
With this correct ion factor,  Eq. (20) now becomes 

By making the substitutions, 

we can write Eq. (25) as 

- _  9 - 1  ' 3 3 3  *Compare with S .  F. Singer; Nature, v q i .  i 92 ,  KO. 4800, pp. J L I - J L J )  

October 1961, where several  of the techniques used here  a r e  employed 
in a l e s s  extensive development. 
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In Fig. 3, O(r ) /dJ (m)  is  graphed as a function of x with u 

as a parameter.  

In  dealing with par t ic les  in orbi t  about the ear th ,  l e t  us make 

the assumption that the distributions a r e  isotropic in direction except 

for  directions which a r e  excluded because the corresponding particle 

orbi ts  intersect the earth.  F o r  the particle to be captured, we must  

have v( r )  5 2YM/r everywhere,  which corresponds to a negative 

total energy. 

we can no longer choose the reference point a t  infinity and we must  

exclude both incoming and outgoing par t ic les  whose orb i t s  inter sect  

the ear th .  

The resu l t s  a r e  much the same as before,  except that 

If ro  is chosen a s  the reference point, Eq. (20 )  is writ ten a s  

where F i s  a correct ion factor and vo is the speed a t  ro . Because 

incoming and outgoing orb i t s  should be eliminated f rom the flux con- 

tr ibutions,  at both the re ference  point and the observation point, Eq, (21) 

1 e = x - e o  cos e 
becomes e = r - e m  

e=em ; e = e o  
sinedO/J s i n e d e  = (31) F = J  cos 8, 

F r o m  Eq. (22)  

= r v sin 8 = r v  s i n 8  (32) rE "E 0 0  0 m 

wheree,  and e m  define the cones of intercepted t ra jec tor ies  a t  

ro and r respectively a s  shown in Fig.  2 , with 

12 
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eo< Q < ~ T  - 8, , sin Qo = rEvE/rovo , 

and the permissible directions at r given by 

Q ~ < Q < ~ T  -8, , sin Qm = rEvE/rv  . 

The  refor e 

and 

( 3 3 )  

( 34) 

t 35) 

F r o m  Eq. (6)  

vz  - 2yM/r0 = vz - 2YM/r 

so that 

v2 = v - 2YM(l/ro - l / r )  
0 

and 

v 2  = v z  - 2YM(l/r  - l /rE) E 0 0 

t 37) 

t 39) 

Using Eqs.  (26)  and (27) and defining u and xo by the equations 



we may  use Eqs.  (38) and (39) to write Eq. ( 3 6 )  as 
r, - (UZ t 1 - l/xo) 

A -  x(u2x t 1 - x/xo_i 

u2 t 1 - l /xo 
1 - 1 -  xoz - u2 

-1 
I (42) 
i 

Figures  4 and 5 show plots of 4/(r)/4(ro) as a function of 

ro equal to two and four ear th  radial  distance from the ear th  for 

radii. 

TREATMENT OF MONODIRECTIONAL 

MONOENERGETIC DISTRIBUTIONS 

A function describing the distribution of meteoroids in  position 

and velocity space may be approximated by the superposition of a group 

of monodirectional monoenergetic distributions which have been given 

proper  weight. In  treating neutron and gamma t ranspor t  problems, 

fo r  example, it is common practice to approximate continuous dis-  

tributions in energy by a number of weighted energy groups. 

a r e  used to obtain a solution for each energy group, and the solutions 

a r e  added to yield a total solution. 

Computers 

Following the same practice, ,  le t  us assume that we have an  

infinite plane emitting meteoroids in the positive x direction as 

shown in F i g .  6. 

i nc rease  in  speed and a r e  deflected f rom their  straight line paths. 

The speed of the me teo ro idas  a function of position relative to the 

gravitating body.is given by Eq. ( 6 ) ,  which is a statement of the con- 

servat ion of energy. 

A s  the meteoroids approach a center of force, they 

The radiation intercepting a spherical  surface of radius r can 

be computed sirriply from angular momentum considerations by using 

15 
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Eq. (7).  

momentum a t  the point of c losest  approach for a par t ic le  which just  

g razes  the sphere of radius  r , we obtain 

Equating the angular momentum at infinity to the angular 

(43) v a = v ( r ) r  . 
00 

F r o m  Eq. ( 6 )  

1 

v(r )  = (2YM/r t v:)" 

so that, combining Eqs .  (43) and (44) we have 

1 - 
a = (2YM/rtv,"f r/va . (45) 

A l l  par t ic les  with smaller  impact parameters  will in te rsec t  the sphere 

of radius  r . If the infinite plane emits meteoroids normally at the 

r a t e  of c par t ic les  per unit a r e a  per unit time with speed va , the 

number intersecting the sphere of radius r is . the number with i m -  

pact pa rame te r s  l e s s  than a ,  o r  

(46) I = r a 2 c  = n ( 1  t 2 y M / r v 2 ) c r 2  
00 

The number intersecting the ear th  is given s imi la r ly  by 

A plot of ear th  intercepts  as a function of velocity at infinity is given 

in F i g .  7. The same resul t  (Eq. (20)) i s  obtained for the isotropic 

c a s e ,  and this plot indicates the magnitude of some of the correct ions 

needed for r ada r  observations of incoming meteoroids.  

19 
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- 
The flux 4(r)  a t  a point can be conveniently approached in  

t e r m s  of the path length per unit time per unit volume t raced out by 

the par t ic les  as they move along t ra jector ies .  

volume 4 n r 2  dr penetrated by a t ra jectory as in  F ig .  8. The path 

length c rea ted  in  this volume by a particle moving along the t ra jec tory  

is given by 

Imagine a differential 

1 - 
_, 2 

The factor of two is included because the orbital  symmetry requi res  

that the particle have the same t rack length on emerging f rom the 

shell. 

(48) and the orbit  equation, it is  easier  to use the conservation of 

momentum equation and write,  from Eq.  (7), 

Although the t rack  length can be evaluated formally f rom Eq. 

- -  I r x v I =  av, = r v  sin cy 

where (Y is  as shown in Fig. 8. Therefore,  

sin Q = av-/rv(r) . 
F r o m F i g .  8 

d r  = ds cos CY 

and 

1 - 
2 .; 2 

ds  = dr/cos = dr /  f l  - sin C Y -  J 

- - dr/  [I - ( a ~ , / r v ( r ) ) ’ ] ~  

2 1  

(49) 
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The path length contributed by particles with impact parameters  between 

a and a t da is  given by 

4na d a  ds  c = 4na c d a d r / [ l  - (avm/rv)2i (53) 
J 

The total  path length in the differential element of volume 4r r2  dr  is  

found by integrating this expression with respec t  to a and subtracting 

the par t  which in te rsec ts  the earth. 

surface is this in tegra l  divided by 4 a r 2  d r  , viz. 

a = a  

The average flux <$> over the 

1 
2 
- 

- (avm/rv)2/ <$> -j, 
-1, a=O 

L 

or, since the flux a t  infinity i s  equal to c , 

- 1- 

+ 1 Sa=aE a - (avm/rv)2J2 j 
a= 0 2 

where,  f r o m  Eq.  (43), 

(55) 
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I and 

Therefore ,  

This i s  the same resul t  a s  for  the isotropic case ,  as  expected. 
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Structure  of the Flux Field for the Monoenergetic, Monodirectional Case  

Fas i c  Tra jec tory  Geometry and Perspect ive 

Consider the physical situation represented in F i g .  6 wherein 

a very  broad s t ream of par t ic les ,  monodirectional and monoenergetic 

a t  infinity, i s  incident upon a sphere of radius,  r , centered about the 

source of an attractive inverse square central  force field. 

our analysis by considering a very thin filament of the s t r e a m ,  and 

we recognize by virtue of the axial symmetry of the distribution de-  

picted in F i g .  6 that the behavior of this filament i s  typical of a se t  

of t ra jec tor ies  which form the elements of a cylindrical shell a t  infinity. 

V e  begin 

Let  J (  m) represent  the magnitude of the flux vector a t  infinity; 

be the value of the impact parameter  which character izes  and let r r a l l  

a l l  of the t ra jector ies  forming a cylindrical shell  of radius  t 'at l  . 
a point in the vicinity of the center of force ,  the flux vector will be 

denoted by J(F) . In par t icular ,  consider the particle cur ren t  crossing 

a unit a r e a  of the sphere about the attractive center .  

composing this cur ren t  a r e  characterized by some value 

impact parameter .  

between J ( r )  and -dA , as  shown in F ig .  9 ,  this cur ren t  i s  

At 

The t ra jector ies  

rrall of the 

If dA be the elemental a r e a ,  and CY the angle 
-- - 

Writing the element of a r e a  dA in spherical  coordinates a s  

dA = 27rr2 sin 8 d e  

25 
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we have af ter  rear rangement ,  

where 

radius  vector 7 at the point where the t ra jec tory  in te rsec ts  the sphere 

of rad ius ,  r . 

CY is  the angle between a t ra jectory tangent vector and the 
~ 

F r o m  Eq. ( 5 0 )  and Fig .  8 ,  

where we have re la ted  the velocities at r and at  infinity by means of 

Eq-. (6) ,  and have introduced an  inverse distance 

2 
Vo3 y =  - 
YM 

F r o m  Eqs.  ( 6 3 )  and (64) 

We postulate’ that the t ra jector ies  a r e  hyperbolae (unbound 

par t ic les)  of the form 

1 

r = y a 2 / j l t [ 1 t y a  2 2 2  ] c o s ( e - e k ) ) .  

The  general  equation of a conic. 
Addison-Wesley, p. 78, 1959. 

Goldstein, H. , Class ica l  Mechanics, 
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where the eccentricity E i s  given by  

- --  -2 '7 ~ ,,l--.-k-, 
~ = v I + y a  

By using the requirement  that r must  go to infinity as 8 

approaches zero ,  i t  is seen that 

o r  

The  t ra jec tory  i s  c loses t  to the or igin when 

r , or  perigee r , occurs  when the denominator of Eq. (66) is  

maximum; i. e. when 

8 = 8k . This  minimum 

P 
8 = 6k ; and 

The angle 6k is a monotonic decreasing function of k ; k = 0 c o r r e -  

sponds to  a t ra jec tory  whose perigee is  at 8 = 7~ , while ve ry  la rge  

k values correspond to 8k  but slightly l a r g e r  than T / Z .  

Equation (66) can be regarded  a s  of the c lass ica l  form 

a'( E' - 1) 
1 t E cos  9 r =  

28 



in  t e r m s  of which the theory of conics is usually discussed; 

called the semi- t ransverse  axiS of the hyperbola. 

and with our choice for the 6 = 0 direction, namely, that direction 

anti-parallel  to the incident s t ream at infinity, Eq. (71) represents  

a pair of hyperbolae whose major  branch (i. e. r > 0) has  the force 

center as an internal focus. 

rcar l f  is 

In our case  E > 1 , 

We can now straightforwardly make the following geometrical  

identifications, and in  so doing we point out that the significance of 

a given k value i s  that it selects  a s e t  of t ra jec tor ies  possessing in 

common, one focus, a line of symmetry ( 6 = 6 k )  , and the same 

asymptotes. 

The half angle p between the asymptotes is given by 

2 

tan p = - ava - - -Ji; = ya . Y M  

Defining the distance between the perigee of any pair  of hyperbolae 

(major  branch and its conjugate) to  be Za’, one finds that 

and 

2 4-i-t-k 
2 ~ a ’  = Z E  /y = 

Y 

is the distance between the source and the other focus for any pair  of 

hyperbolae. 

a l so  displayed in t e r m s  of k and the impact parameter .  

These relationships a re  shown in F i g .  10,  where they a r e  

29 
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A s  energy var ies  a t  constant k = yZa2  , the distance a t  perigee 

and distance to the center a l l  vary inversely by the same factor;  this 

i s  not contrary to physical common sense ( i . e .  the grea te r  the energy, 

the grea te r  the perigee distance) because "atr , the impact pa rame te r ,  

is varying inversely with y . A s  either y is var ied a t  a fixed impact 

pa rame te r ,  or as "a", the impact parameter ,  is var ied a t  constant 

energy y , one obtains a continuous spectrum of hyperbolae of mono- 

tonically varying 8 k  and f i k  . A s  y or  Itarr i nc reases ,  8k decreases  

toward the limiting value of ~ / 2  

finite energy (hence undisturbed by the attractive cen te r ) ,  o r  to a 

par t ic le  of infinite impact parameter  ( s o  f a r  away that its t ra jectory 

is  undeflected). 

increasing energy o r  impact parameter ,  the ax is  of symmetry becomes 

perpendicular to voo; and p , the half angle of the rrcone" of t r a j ec -  

t o r i e s  i nc reases  toward r / 2  . For  decreasing y o r  r t a r r ,  tlar '  o r  

y being held constant respectively, the cone of t ra jec tor ies  narrows 

and the axis  of symmetry  tends to become paral le l  to Too , resulting 

in  grea te r  and grea te r  scattering angles. 

, corresponding to a particle of in -  

Or  to s ay the same thing another way, with either 

- 

The Flux Zones 

Le t  us  assume that observations of fluxes and cur ren ts  a r e  

made on the surface of a sphere of a given radius ,  r . 
radius  i s  chosen, a selection has  been made of that portion of the in -  

cident s t r eam which can intersect  the sphere.  

upper l imit ,  amax , for  the impact parameter  for  any given y , in 

that t ra jec tor ies  possessing impact pa rame te r s  grea te r  than amax 

will  not be affected enough by the attractive center to intersect  the 

Once this 

This  establishes an 

. 
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sphere.  A lower limit amin is  established for scat tered !'radiation" 

(par t ic les  that a r e  crossing the surface of the sphere f rom the inside 

to the outside) by the finite radius  of the earth: Those t ra jec tor ies  

whose perigees a r e  l e s s  than some rA ( in  some sense  a radius of 

the atmosphere) a re  terminated. 

the 

mediately provides the,se limiting values of the impact parameter  s ,  

viz. 

Thus a spherical  zone centered about 

8 = 0 line is screened from all scat tered flux. Equation (45)  i m -  

where ver i s  the magnitude of the escape velocity at. the point located 

by T .  

We consider the flux to be composed of three components, of 

which one is called direct  flux, 

fluxes, 4, and 4 &  . At any point on the surface of the sphere of 

observation, flux approaching the ear th  ( i .  e. has  yet to pass  through 

perigee) i s  direct  flux; flux receding from the ea r th  (having attained 

perigee) i s  scat tered flux. 

scat tered flux is  considered to a r i s e  f rom two sources .  Scattered 

flux, 4s , ar i s ing  f rom part ic les  whose t ra jec tor ies  l ie wholly in the 

same hemisphere',  is distinguished from scat tered flux, 4 
to t ra jector ies  which penetrate both hemispheres .  The zone,O< 8 <  7r , 

defines the "upper hemisphere,"  the zone, 7r < 8 < 2  7r , defines the 

"lower hemisphere." 

4~ , the other two being scat tered 

F o r  purposes of mathematical  convenience, 

, belonging 

Strictly semi-circles  in  the plane; however,  "hemisphere" is  con- 
c e ptually helpful. 
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This  classification of the fluxes divides the surface of the 

sphere of observation into zones a s  follows. F o r  finite rA , there 

i s  a zone, 0 5 161 5 O m i n  centered about 8 = 0 in which there  is 

only direct  flux where O m i n  is a function of y ,  r ,  and rA . 
Next, up to a direction specified by 8 = Bk max there  is a 

zone upon which both scat tered and direct  flux, o s  and 8, , a r e  

incident. F o r  18 I > 8 k  max there can be only scat tered fluxes, 

4 s  and 4 s . There  is a spherical sector  defined by I e ]  5 8, 

that par t ic les  entering the sphere through this sec tor ,  all emerge  

f rom the other hemisphere;  fo r  8, < 101 < 6kmax  all t ra jector ies  

remain  in the same hemisphere.  

I 

I 
such 

TABLE I 

Summary of F lux  Pat tern in Upper Hemisphere 
Hemisphere in  Which 

Spherical  Zone Flux Components Direct  Fluxes Emerge  

o < p l i e m i n  4 D  intercepted by ear th  

e m i n <  le!- '#'D -t lower < % 

7~ 4 s +  4; no direct  flux e k max 

The pattern in the lower hemisphere is the same because of 

symmetry.  The zones and flux designations a r e  shown'in Fig.  11. 
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At every  point 0'7 the spherical surface we can now explicitly 

indicate the flux field i n  t e r m s  of the associated impact pa rame te r s  

(aD and a s  o r  a i  ) ,  their  derivatives with respect  to 0 ; cos Q~ , 

cos Q 

quantities associated with the lower hemisphere.  

concision with readily comprehensible formulae,  we mus t  develop 

some eleme ; ta ry  geometrical  relationships between the 0 ' s  and a ' s  

and a s sume  a convention for  the latter.  

, cos Qi ; sin 0 and cos  0 , where the p r imes  refer  to 

To  a r r i v e  a t  a 

The  convention on Q will be that i t  is  the angle f rom the i;i- 

ward  pointing radius  vector to  the directed t ra jectory,  defined to be 

positive in the counterclockwise sense. 

about the axis 

geometry a t  entry. 

The t ra jectory i s  symmetr ic  

0 = o k  ; thus the geometry at exit  i s  identical to the 

Thus we can immediately write (See F ig .  12)  

a s  t C Y D  = x as and QD 2 0 always . (75)  

where ,  a s  is  the convention throughout, the pr ime r e f e r s  to a t ra jectory 

entering the other( lower) hemisphere.  

sponding relationships between the impact parameters  of the direct  

and scat tered fluxes. 

These relations imply c o r r e  - 

By the geometrical  symmetry,  for  every t ra jectory the following 

relation holds between the angles  made by the direct  and scat tered fluxes 

at the i r  point of en t ry  and exit from a sphere of observation: 
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If O D  = 8 k  ( i .e .  grazing incidence), then 8s = 8 k  ; i f  8s I e,, 
then OD I 8, = 2 8 k  - 7~ . Note the introduction of 8, , the 

angle  of entry such that the t ra jectory exits a t  8 = ; there  is  an  

associated value for  the impact parameter  

mined sub s equently . 
a , which will be deter - 

Because the ear th  possesses  an  atmosphere of finite radius  

rA , effective in  stopping meteoric  par t ic les ,  not a l l  zones of a sphere  

of observation receive scat tered flux. 

terizing the limiting t ra jec tory  can be easi ly  found by taking the perigee 

distance rp = rA in Eq.  (70);  thus 

The impact  parameter  charac - 

Therefor  e ,  

This  value of l l a t l  when substituted into the t ra jec tory  equation (Eq. 66 ) 

yields 

which is satisfied by two values of 8 . The minimum angle 8 m i n  

at which sca t te red  flux can be received, is the angle of exit of the 

t ra jec tory  charac te r ized  by amin ; it is the larger of the two angles 

just  determined. In order  to refer  our resu l t  to  the upper hemisphere,  

we use  2 T  minus this angle instead of the angle i tself .  
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A similar use of Eq. (66),  solving for impact  parameter  ra ther  

than for  angle, and recalling that impact parameter  appears  in E 

yields 

, 

---, 
2 

1y 
- - r i l t -  ; 

amax 

where 

a t ra jectory within a sphere of radius  r ; and aT is the impact 

parameter  corresponding to that t ra jectory which exits f rom the sphere 

at e = = .  

amax i s  the la rges t  value of the impact parameter  permitting 

The Conjugate Tra jec tor ies  

In the foregoing we have discussed direct  and scat tered fluxes 

without explicitly proving that,  with the exception of a zone receiving 

only direct  flux (an effect due to the ear th  not being a point m a s s ) ,  

every field point is threaded by two t ra jec tor ies ,  i. e. , a direct  and 

a scat tered t ra jectory,  o r  two scat tered t ra jec tor ies .  

The t ra jectory equation for  given r and 8 i s  a quadratic 

Thus,  equation determining two values for  the impact parameter .  

using Eqs .  (66) and (69) 

- -I---_ 

( 8 3 )  
r y  s in  8 f ir2yyZ s i n Z 6  t 4 r y (  1 - cos 6) a =  

2 Y  

Both values of ''all correspond to r ea l  t ra jec tor ies .  This  is obvious 

for the positive' l l a l l  , henceforth denoted by a+ ; that a -  , the 

a and amax of the preceding section a r e  both on the positive 
branch of Eq. (72). 
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negative value, a l so  charac te r izes  a t ra jectory,  i s  evident f rom the 

following. 

Le t  a -  = -a '  and substitute in the t ra jec tory  equation obtaining 

- ya' 
r =  

1 - cos e - ya' s in  8 

which differs f rom our  original equation by the sign preceding ya' sin 8 

in the denominator. Next consider the transformation 8 = -8' applied 

to the orig'inal t ra jec tory  equation. Basically this amounts to changing 

the convention for positive 8 from the clockwise to counterclockwise 

direction. The resu l t  is  

( 8.5) Y a Z  + Y a 2  
1 - cos e t ya s in  8 1 - cos e' - ya s in  8' 

which shows Eq. (84) does represent  a hyperbola, in par t icular ,  one 

which is  the reflection over the line 8 = 0 , of 

ya' 
r =  

1 - c o s  e t ya' sin e 

where rla'll may be la- I .  

Thus,  rewrit ing Eq. (84) in  terms of 8' 

yat2 
r =  

and we have recaptured the proper form.  

the point (1, e) i n  the upper hemisphere r equ i r e s  that 8' be replaced 

Evaluation of Eq. (87) at 

by = 9 since angles  in Eq. (87)  a r e  r , easured  p s i t i y e  in the  r=unter l  

clockwise sense.  One therefore  has upon substituting a = -a -  a s  well ,  
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(88) ya 2 - - Y a  r =  
1 - c o s (  - 6 )  t yap s in  ( - e )  1 - cos  e t ya-  s in  e 

which by definition i s  satisfied a t  ( r ,  e ) .  

Next it is desirable to re la te  the angles of entrance and e g r e s s  

of the conjugate t ra jec tor ies  a t  any point, i. e. , t ra jec tor ies  inter  - 
secting a t  that point. Corresponding to Eq. (78) for  any t ra jec tory  

incident on the upper hemisphere,  

for the primed o r  conjugate t ra jectory.  

and 8D is immediately established by substituting (F ig .  13 ) 

The connection between 
I 

f o r  intersections a t  points where 

is 
e <  ek max . The result ing relation 

I l e t e = 2 o k ,  

eD = 0; < e 

D D 

(91) 

k m a x  * 

If the intersection is that of scat tered t r a j ec to r i e s ,  i. e . ,  8 > 8k maX 

at the point of intersection, it is  c lear  f r o m  Fig .  13 that 8 6 = 0s . 
Accordingly , 
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and subtracting Eq. (78),  one finds 

Other interesting relationships can be readily derived; however, 

our a im here is mere ly  to provide a foundation for further analysis and 

to introduce the concepts necessary  for a succinct description of the 

flux field in the next section. 

Exhibition of the Flux Fie ld  

In order  to make a brief comprehensible presentation of the 

flux field, we rewri te  the formulae for the basic  pa rame te r s  along 

with explanatory r emarks .  

The basic equation is Eq.  (62)  

a da 
r z  sin Bcos (Y de 

- J(r)/J, = (94) 

wherein all quantities have been previously introduced with the excep- 

tion of 'da/d8 . 
F r o m  Eq. (83) 

- _ -  ._ 

r y  s i n e *  /r2-yz sin' e t 4yr ( 1  - cos e )  
2 Y  

a =  

at corresponds to contributions to direct  flux upon entry of the t r a -  

jectory,  and to flux scat tered in the same hemisphere (as i t  entered) 

upon exit of the trajectory; a -  corresponds to sca t te red  flux that 

entered from the other (lower) hemisphere.  
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- 
- 1  

( r 2 y  cos e s in  8 t 2 r  sin e da - - I- 1 r c o s e *  
d e  2 I , P j 7 s i n 2  8 t 4yr ( 1  - cos e j i 

j (96) 
I 

I 

- 

This  derivative must  be evaluated for the calculation of flux at a point; 

however, for applications involving integrations over the sphere 's  

surface,  the d e  can usually be divided out into the de of the surface 

element,  to convert  a n  integration over 8 

impact parameter .  The derivative da/de is positive for  direct  flux 

contributions and negative for scat tered flux. 

into a s impler  one over 

Finally,  cos CY as derived in Eq. (65) ,. is for  direct  flux in  the 

upper hemisphere.  More generally 
1 
2 

- -  
y 2 r 2  t 2yr - y 2 a i  

y2rz t 2yr 
cos = +  ' 1  

- 

(97) 

where the f subscr ipts  on correlate  with the sign in front of the 

bracke ts ,  and not with the choice made for ''a" - i . e .  at o r  a -  . - 
Of the various possibil i t ies only the following a r e  of immediate interes.t; 

the o thers  correspond to symmetr ic  t ra jec tor ies  de scribing identical 

situations in  the lower hemisphere.  

F o r  direct  flux bn a = a+ 

t 
CY = eD ; o < CY < n / 2  ; a <  COS CY COS CY D D 

F o r  scat tered flux 4s a = a+ 

n/2 < a - cos  ff = - c o s  CY = cos a- S = = - %  ; S '  S D a=cY  

(99) 
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F o r  scat tered flux 4; a =  a -  

where r e fe r s  to direct  flux incident in the lower 

These relationships can be directly obtained f rom F i g  

in  mind our convention on the sign of Q . 

hemisphere.  

1 2  i f  one keeps 

This development permits  one to consider any individual flux 
f 

component contribution - e .  g. , $D , 4s , and 4s , o r  components 

in  any given direction, such as tangential and radial  flux cur ren ts  a s  

they would be encountered by a detector.  

Thus the inward radial  flux is  given by 

J(r,;) = 4D cos  cy 

and the counterclockwise tangential component by 

A 

where 8 is  the unit vector normal  to r , To calculate the flux as  

i t  would be measured  by a moving detector ,  one must  apply the formulae 

from the la ter  section on detector motion to these r e su l t s ,  which a r e  

valid only for a detector at r e s t  with r e spec t  to the at t ract ive center .  

Finally, in  considering the total f lux at a point we mus t  add 

the magnitudes of the various contributions since the scat tered and 

direct  radiations are  assumed incoherent. 
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Thus,  

(%) +a ,  - 
r z  s in  8 cos CY- 

4; - 

where  in da */d 8 the f identifies the sign to be taken in evaluating 

Eq. (96). 

is inherently positive i f  par t ic les  a re  entering the sphere of observation, 

and negative i f  it corresponds to departing radiation. 

Under the conventions we have assumed,  a flux contribution 

V_grificatio-n-by Direct Calculation of the Resul t  Obtained F r o m  the 
Application . _. of Liouville's Theorem to Monoenergetic I sotropic Distributions 

In this section the formulae of the preceding discussion which 

were  obtained for the monodirectional ca se ,  will be integrated over 

the surface of the sphere of observation to obtain averaged values of the 

d i rec t  and scat tered fluxes. .These will be slmply combined by adding 
11- -: _. 
U L C ~ L  lxiag&t.udes, siiice the r ad la t i~n  is Z S S G Y E C ~  i n c ~ h ~ r e c t ,  acd t h e i r  
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sum will be identified with the radial  distribution of flux obtained in 

the second section of this paper ,  thus,  for  the isotropic case ,  obtaining 

independently the resu l t ,  that the radial  dependence of the flux is as  

We shall  ignore the small  effect due to the finite s ize  of the 

scattering center.  

has  been discussed i n  detail. 

re ly  heavily on the previous development and on Fig.  11. 

At  each point there  a r e  two flux contributions, a s  

In developing these integrals ,  we will  

We des i re  

The 

difficulties this  might entail we avoid ent i re ly  by converting the integrals  

to ones over impact parameter  r a the r  than angle. 

different fo rms  f o r  the two major  regions in the upper hemisphere ,  viz 

O <  < k rnax 
8 < 7~ 

8 integration is  the only one of a non-trivial  nature;  and whatever 

The flux d ( r )  a s s u m e s  

where there  is direct  and scat tered flux; and 8 k  max < 

where there  a r e  scat tered fluxes only. 

where ‘ e k m a x  

46 



Thus 

r 
where 4,-, , 4s , and 4s a r e  given by Eq. (101). They a r e  functions 

of a* , cos  , and dak/d6 specified by Eqs. (95) through (100)- 

altogether an  unfriendly integral  ! In principle one could substitute 

these functions and straightforwardly perform the integration 'over 8 

However, this we avoid by noticing that all integrations can be done 

. 

over impact parameter  - f o r ,  (da/d8)d8 is common to all integrands.  

F u r t h e r m o r e ,  since we are  interested only in total contributions, the 

separation into components as indicated by Eq. (104) is not necessary  

and indeed is  not the most  advantageous representation. 

Expressing the integrals  i n  t e r m s  of impact parameter  

a t  da t  
0 0 c o s q  

r 2  y k m a x  amax 
4,-, s i n 8  de  -$ 

7r 

ips sin 8 d8  t r2  J4sf sin 0 d e  = 

'k max 
- 

, f  a - d a ,  
COSLY- 

r2  J 4, s i n ' 8 d 8  - J  
0 

t 
since all 4s contribution a r i s e s  f rom conjugate t ra jec tor ies  entering 

the lower hemis phere at angles  from 0 to - 8, ( s e e  Eq. (77)  e t  sequens). 
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since the total 4 
cipitating in the region 8, < 8 < O k  max . 

contribution en ters  the sphere a s  direct  flux. p r e  - S 

Now it i s  obvious that the f subscripts a r e  meaningless (i. e. , 

the a 's  a r e  dummy variables.  Therefore ,  recognizing that cos Q'+ 

and cos Q- have the same functional dependence on a -  , we can wri te  

- 
r 2  S b s i n  8 d e  = i i p m a x a  d a  a d a  t J m a x a d a  

' 

- 
C O S Q  0 !- 0 COSCY 0 c o s @  

(107)  

Since we a r e  concerned only with magnitudes, we may replace 

-a 
since in this example, s = - - a "ada  a7T a d a  

- 
0 0 by J C G Z Y  s cos(Y 

0 0 

Then 

o r  

(108) 
a d a  

- 2't I-_._-.------.- 
0 i y r t 2yr - y%F' 

\a' y2r2 t 2yr 

y$r sin 8 de = 
0 
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Final ly ,  f rom Eq. (106) 

0 

1 
(y2rZ t 2yr) - ( y 2 r 2  t 2yrF [ y 2 r 2  t 2yr - ( y 2 r 2  t ~ y r ) ]  

r 2  y2 

( 109) 

where f rom Eq. ( 74) 
1 

2 \” 
a = r il t -I -, all reducing to 
max !, r y j  

in  ful l  agreement  with Eq. ( Z O ) ,  the Liouville theorem resul t .  
2 

O r ,  substituting y = - voo YM and recalling Eq. (6) 
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Effect of Detector Motion on ImDact Rate 

The motion of a particle detector changes both the energy and 

the direction of particle impact. 

during a snowstorm knows that, as the c a r  gains speed, the snowflakes 

appear to a r r ive  m o r e  and more  rapidly f rom the forward direction. If 

w e  measure the ra te  of meteo,roid impact f rom a moving satellite, we 

must  know how to co r rec t  for  the effect of satell i te motion on the count 

ra te  and how to compute the increased penetration hazard faced by a 

vehicle because of its motion through space.  

Anyone who has ridden in a c a r  a t  night 

1 '  

F o r  purposes of computation, le t  us  assume that we  have two 

coordinate systems,  one in which the radiation distribution function 

N C ,  v)  i s  to be determined. AS shown in Fig.  14, a particle is located 

in the f i r s t  system by a position vector 

tion vector r' . The vector R locates the second system relative 

to the f i rs t .  

- 

- 
r and in the second by a posi- 

- 

By vector a lgebra 

- 
(11'1) - r = ~ + T l ,  

and by time differentiation 

- t  - - 
v = v + v .  

In the following discussion, we will a s sume  that 

is not, so that 

R is zero but that 7 

- 1  
- 
r = r  

By performing the sca l a r  product of 'each side of Eq. (112) with itself, 

we obtain 
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- 
Transposing V in  Eq. ( 1  12) and repeating the operation, we obtain 

The angles 8 and 8' a r e  a s  shown in Fig. 15. These equations r e -  

late the kinetic energy of a particle in one system to i t s  kinetic energy 

in the other. Fur thermore ,  they a r e  easi ly  solved to obtain the speeds 

and directions observed in one system (VI ,  O f )  in t e r m s  of their  un- 

primed analogues (v, 8 ). 

From Eq. (114), we have 

2 1 2  v - v - v 2  
2v' v cos el  = Y 

V and substitution f o r  v'' 

(shown a s  z = - vo 

f rom Eq. (115), followed by defining z =- 
V 

in the figures simply to avoid confusion), yields V 

This rleationship is shown in F i g .  16 f o r  severa l  z values. 

In the pr imed system, the speed of a par t ic le  described by 

v (v, 8 ) i n  the unprimed system, resul ts  by solving Eq. (114), which 

i s  a quadratic in vr . 
0 

One finds 

VO 

V 
where z = - as before, and we have taken the positive root - the 
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negative v' not being required in our  development. One could substitute 
V' cos 8' f rom Eq. (116) to obtain the relation between z and zf= - * v y  

however, this is not necessary  f o r  our  purposes.  

plotted in Fig. 17 f o r  the same  z values used in Fig. 16. One notices 

in the region z <  1 that for  a given 8' and fixed z there  a r e  two solu- 

tions f o r  vo and 8 ; an associated double valulessness exis ts  in Fig.  17. 

Equation (117) is 

-- 
In relating the distribution functions N ( r ,  v) and N' (2 , T), 

it is convenient to choose coordinate sys tems in such a way that the 

position vector 1: and then azimuthal angle $ a r e  unchanged by the 

coordinate transformations.  These conditions are  me t  in Eq. (1 13). 

Because of the invariancy of the particle density to Galilean t r ans -  

formations 

- 

- - 
N ( r  ) = jJj N ( r , i )  d v  = JJJ M ( 7  , V' ) dv' = N' (F' ) 

By using the special conditions on our  coordinate sys tems and the sub-  

stitutions 

(118) 
R l?! 

w e  can write the equation for  particle density m o r e  explicitly as  
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Transforming this las t  integral over the pr imed coordinates 

to the unprimed coordinates, one has 

o r  

JflN’[;,v’,p’, 4 1  v” dddp’d4  = l[s N’ [ ~ , v ’ ( v , p ) p ~ v , p ) 4 ] v 2 d v d p  d 4  
R R 

where 

( 122) 

is the Jacobian of the transformation’ implied by Eqs. ( 1  14) and ( 1  15). 

This  resul t  a r i s e s  f rom the intrinsic propert ies  of this t r a n s -  

formation and is valid for any well behaved function of v’ , p’ . 

Thus any integral  of the form 

f‘( r )  = JJJ f [ r ,  v’, p’ , $1 vr2 dv’ dp’ d 4  

R’ 

Courant,  Differential and Integral Calculus,  p. 252 .  
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can be computed in t e r m s  of the unprimed coordinates by 

= JJJ f l F , v ’ ( v , p  ),  p’(v,p )4] v2 dv dp d$ 

R 
which may be m o r e  tractable.  

(124) 

Therefore expressing the integral  over the pr imed coordinates 

in Eq.  (1  18) in t e r m s  of the unprimed coordinates,  
.. 

since Eq. (125) i s  valid for a rb i t r a ry  pa i r s  of associated regions R 

and R’ -, one has  

N [ 7, v,p4] v2 = N’ [ r, v’( pv) ,  p’ ( pv)4] v2 

o r  

F o r  the particular case  of uniform monoenergetic monodirectional 

radiation of speed vo , 

and the particle density N(Y) and flux 4 (r) a r e  given by 

N(F) = JJJ N ( r ,  v , p ,  4 )  v2 dv dp  d 4 = C vo2 

::: 
A similar  relation can be obtained by interchanging primed and un- 
primed variables. 
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r 

In the other cooidinate system, using Eqs. ( 1  15) and (125), 

1 - 

v2 t v 2  -2vvp12 
d 

and 

d’(r) = m[.. t v2 - 2 V v p  C ~ ( V  - v o ) b ( p -  p o ) 6 ( 4 - 4 0 ) v 2 d v d p d 4  li 
1 
2 
- 

= c v2 t vo’ - ZVV, vo” i 
The rat io  

(131) 

represents  the multiplication factor for the f l u x  as  a function of detector 

motion. 

p o  . 
means. 

Figure 18 shows this effect for severa l  values of V/vo and 

This resu l t  could of course have been obtained by more  elementary 

If the radiation is spatially uniform, monoen.ergetic, and isotropic ,  

we can write 

- -  
N ( r , v )  = C 6 ( v  - v0) . ( 13’3) 

The particle density N ( 3  and flux 4 ( r )  a r e  given by 

(134) N ( 3  = flJ C6(v  - v o ) v 2 d v d p d 4  = 4 n C v o  2 
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In the moving system, we a r e  able to wri te ,  by the same reasoning 

as before,  that 

'. 1 
2 
- 

$'(;) = JJ [v' t V 2  = 2 V v p l  C 6 ( v  - vo)v2 d v d p  d4 (136) 
- 

P 

The integration over v, p , and 4 yields 
W 

The absolute value signs are used because VI mus t  always be positive. 

F o r  vo < V , substituting Eq. (135) 

and for  vo > V 

A graph of the effect of satell i te motion on the isotropic monoenergetic 

par t ic le  flux is shown in Fig.  19. 

The to t a l  kinetic energy in the two sys tems is given by  

- -  
<T> = - rr) JJ v2 N( r ,v )v '  dv dp  d4  ( 140) 2 
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For the monodirectional monoenergetic case ,  the rat io  of Eqs. ( 140) 

and (141') i s  

<T> /<T>= T'/T = l + ( $ r  - 2 [ $ ] p 0  . (141) 

I 

For the isotropic monoenergetic case 
w 

(143) 

Graphs of these functions a r e  shown in F ig .  20 and 2 1 .  

SUMMARY 

The foregoing discussion has been in the form of a general  survey 

to i l lustrate  the magnitude and nature of some of the problems associated 

with measuring meteoroid flux from moving satell i tes.  The application 

of the Liouville theorem represented an  extension of a practice common 

to the t reatment  of charged particles in  electromagnetic fields and the 

t reatment  of the s t ruc ture  of the flux field constituted an extension of 

the asymptotic discussion of the Rutherford scat ter ing problem involvihg 

Coulomb repulsion to the region near an attracting force center.  

problem of the orientation of a non-spherical detector was not considered. 

The 

An attempt will be made to apply the techniques developed he re  

to the detailed interpretation of the count r a t e  measured  by the Saturn- 

boosted micrometeoroid satellite. Statist ical  methods must  of course 

be developed to bridge the gap between the analflic s t reams assumed 

he re  and the paucity of counts expected f rom the coming experiment. 
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A mathematical  bas i s  for discussing such subjects as  the 

focusing of meteoroids by the ear th  has  been provided, but considerable 

work s t i l l  remains  on the problem of using measured  distributions,  

with no velocity or  direction information, to estimate the meteoroid 
- flux a t  infinity. 

I, (. 1 
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